$0 < \theta < \frac{\pi }{2}$.જો અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ ની ઉત્કેન્દ્રતા $2$ કર્તા વધારે હોય તો નાભીલંબની મહતમ લંબાઈ ક્યાં અંતરાલમાં મળે,
$\left( {3,\infty } \right)$
$\left( {\frac{3}{2},2} \right]$
$\left( {2,3} \right]$
$\left( {1,\frac{3}{2}} \right]$
જો $\mathrm{e}_{1}$ અને $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની ઉકેન્દ્રીતા હોય અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો $\mathrm{k}$ મેળવો.
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ માટે જો $'\alpha '$ ને બદલવામાં આવે છે તો . . .. અચળ રહે છે .
અતિવલય ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ માટે $\theta $ ચલ હોય તો . . . . . ની કિંમત $\theta $ પર આધારિત નથી.
$\left( {1,\,\,2\,\,\sqrt 2 } \right)$માંથી અતિવલય $16x^{2} - 25y^{2} = 400$ પર દોરેલા સ્પર્શકો વચ્ચેનો ખૂણો.....
અતિવલય $16x^{2} - 32x - 3y^{2} + 12y = 44 $ ની ઉત્કેન્દ્રતા શોધો.